O K L A H O M A S T A T E U N I V E R S I T Y SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 Linear System Spring 1999 Midterm Exam \#2

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

For

$$
A=\left[\begin{array}{lll}
3 & 2 & 1 \\
3 & 2 & 1 \\
3 & 2 & 1
\end{array}\right],
$$

determine the rank and nullity of the above linear operator, A ? And find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 2:
Extend the set
$\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 4\end{array}\right]$
to form a basis in $\left(\mathfrak{R}^{4}, \mathfrak{R}\right)$.

Problem 3:

Show that

$$
\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]
$$

span the same subspace V of $\left(\mathfrak{R}^{3}, \mathfrak{R}\right)$.

Problem 4:

Find the relationship between the two bases $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$, where

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \bar{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \bar{v}_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \bar{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

Also determine the representation of the vector $e_{2}^{T}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ with respect to both of the above bases.

Problem 5:

A vector space, V, is spanned by v_{1}, v_{2}, v_{3} given as

$$
v_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-5 \\
1 \\
1 \\
5
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right] .
$$

Determine the orthogonal complement space of V, V^{\perp}, and find a basis and dimension of V^{\perp}. For $x=\left[\begin{array}{llll}0 & 3 & 3 & 0\end{array}\right]^{T}$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V, x_{2} \in V^{\perp}$.

